Preliminary communication

BIMOLECULAR HOMOLYTIC SUBSTITUTION OF DIALKYL SELENIDES AND TELLURIDES WITH TRI-n-BUTYLTIN RADICALS

J.C. SCAIANO, P. SCHMID and K.U. INGOLD*

Division of Chemistry, National Research Council of Canada, Ottawa, K1A OR9 (Canada) (Received August 5th, 1976)

Summary

The rate constants for the $S_{\rm H}2$ reactions of tri-n-butyltin radicals with several dialkyl selenides and tellurides have been measured by EPR spectroscopy.

Bimolecular homolytic substitution $(S_H 2)$ reactions at oxygen and sulfur have been recognized for many years [1]. Studies of such processes have been confined mainly to those which lead to scission of the O—O bond of peroxides and the S—S bonds of di- and polysulfides. There are few examples of C—O or C—S cleavage and there have been no specific studies of $S_H 2$ reactions at selenium or tellurium [1]. We wish to report that tri-n-butyltin radicals undergo extremely rapid $S_H 2$ reactions with dialkyl selenides and tellurides.

Photolysis using quartz optics and a high pressure mercury lamp of a hydrocarbon solution of hexa-n-butylditin and a dialkyl selenide or telluride directly in the cavity of a Varian E-4 EPR spectrometer gave a strong EPR signal due to the appropriate alkyl radical. There was no EPR signal in the absence of the ditin.

$$(n-Bu_{3}Sn)_{2} \xrightarrow{h\nu} 2 n-Bu_{3}Sn^{*}$$

$$n-Bu_{3}Sn^{*} + RXR' \xrightarrow{k_{1}} n-Bu_{3}SnXR' + R^{*}$$

$$(X = Se \text{ or } Te)$$

$$(1)$$

Bromine abstraction from primary alkyl bromides was found to be competitive with reaction 1, i.e.,

n-Bu₃Sn[•] + R["]CH₂CH₂Br
$$\xrightarrow{k_2}$$
 n-Bu₃SnBr + R["]CH₂CH₂[•]
(R["] = 1-adamantyl)

^{*}To whom correspondence should be addressed.

TABLE 1

RXR'	R'	Temperature range (K)	$\log_{(A_1/A_2)}$	$\frac{E_1 - E_2}{(\text{kcal/mol})}$	k ₁ at 25°C (mol ⁻¹ sec ⁻¹)
CH ₃ SeCH ₃	CH3.	165-228	-2.3 ± 0.1	-0.9 ± 0.1	3.7 × 10 ⁵
C2H5SeC2H5	CH, CH,	158-253	-1.1 ± 0.1	0.3 ± 0.1	8.6 × 10 ⁵
(CH ₂) ₃ CSe(CH ₂) ₃ CH ₅	(Сн,)С'	240-294	1.2 ± 0.2	2.8 ± 0.3	2.7×10^{6}
CH ₃ TeCH ₃	CH,	177-268	-1.1 ± 0.1	-1.4 ± 0.1	1.4×10^{7}
CH ₃ SCH ₃	CH3.	173-298	_		< 10 ⁴

KINETIC PARAMETERS FOR THE S_{H2} REACTIONS OF n-Bu₃Sn[•] RADICALS WITH SOME DIALKYL SELENIDES, TELLURIDES AND SULFIDES^a

^aErrors are standard deviations.

Since the rate constants for the bimolecular self-reactions of R[•] and R"CH₂CH₂[•] will be approximately equal^{*} [2] the rate constant ratio k_1/k_2 can be represented by:

$\frac{k_1}{k_2} = \frac{[\mathbb{R}][\mathbb{R}'' \mathrm{CH}_2 \mathrm{CH}_2 \mathrm{Br}]}{[\mathbb{R}'' \mathrm{CH}_2 \mathrm{CH}_2^{*}][\mathbb{R} \mathrm{X} \mathbb{R}']}$

Values of A_1/A_2 and $E_1 - E_2$ were determined for various RXR' by measurements of relative radical concentrations over a range of temperature. These values are listed in Table 1 together with absolute values for k_1 at 25°C. The latter was calculated from the known value for k_2 at this temperature (viz., 1.9×10^7 mol⁻¹ s⁻¹ [3]). An estimated upper limit for the rate constant of the reaction of n-Bu₃Sn' with dimethyl sulfide is included for comparison.

The kinetic data in Table 1 are "normal" for $S_{\rm H}2$ processes. That is, the $S_{\rm H}2$ reactions at Se and Te are very fast and k_1 increases on going down the Periodic Table (cf. Me₂S, Me₂Se, and Me₂Te), and increases as more stabilized alkyls are displaced (cf. Me₂Se, Et₂Se, and t-BuSe-n-Bu). However, the pre-exponential factors for Me₂Se, Et₂Se, and t-BuSe-n-Bu show an unexpected variation and the activation energies increase rather than decrease as the leaving alkyl radical becomes more stabilized. Similar, though less pronounced behavior has been observed in t-alkoxydealkylation at boron and has been attributed to steric factors [4].

Finally, we note that dialkyl selenides and tellurides also undergo rapid $S_{\rm H}2$ reactions when attacked by trimethylsilyl, phenyl, or perfluorophenyl radicals.

Acknowledgement

We are extremely grateful to Professor D. Seebach for the sample of n-butylt-butyl selenide used in this work. One of us (J.C.S.) would like to acknowledge support as a visiting scientist by the N.R.C. (1975), and another (P.S.) would like to acknowledge receipt of an N.R.C. Research Associateship (1975-76).

^{*}That is, the reactions, $2R \cdot \rightarrow$ products and $2R'CH_2CH_2 \cdot \rightarrow$ products will both occur at, or close to the diffusion-controlled limit [2].

References

- 1 K.U. Ingold and B.P. Roberts, Free Radical Substitution Reactions, Wiley, New York, N.Y., 1971. Chapt. 7.

- 2 K.U. Ingold in J.K. Kochi (Ed.), Free Radicals, Wiley, New York, N.Y., 1973, Vol. I, Chapt. 2.
 3 D.J. Carlsson and K.U. Ingold, J. Amer. Chem. Soc., 90 (1968) 7047.
 4 A.G. Davies and B.P. Roberts in J.K. Kochi (Ed.), Free radicals, Wiley, New York, N.Y., 1973, Vol. I. Chapt. 10.